A&P/Waldbaum's Supermarket: Capstone 60 with Desiccant Unit

DOE/CETC Workshop on Microturbine Applications January 21, 2004

Hugh I Henderson, Jr., P.E.

CDH Energy Corp.

Cazenovia, NY

www.cdhenergy.com

Project Team

Host Facility:

Waldbaums/A&P

Project Sponsors:

- NYSERDA
- KeySpan Gas R&D
- Oak Ridge National Laboratory
- National Renewable Energy Laboratory

NYSERD*A*

Others:

 AGA, Exergy Partners, GTI, EPA/ETV

OAK RIDGE NATIONAL LABORATORY

CHP in Supermarkets

 Peak is 400-600 kW for typical store

- Significant space heating loads due to refrigerated display cases
- Desiccant dehumidification is widely used in supermarkets
 - more than 1,000 desiccant units in US stores
- Good balance between thermal and electrical loads

Project Schedule/Experiences

Microturbine installed as add-on to normal supermarket construction cycle

	<u>Plan</u>	<u>Actual</u>
Equipment Received:	Jan02	Jan02
System Commissioned:	Jul02	Aug02
Permission to Operate:	Jul02	Apr03
Monitoring Started:	Jul02	Aug02

Utility interconnection issues delayed startup by 8 months!

The CHP System

- Capstone 60 kW Microturbine
- Nat. Gas Compressor (scroll)
- Unifin Heat Exchanger
- Hot Water Coils Installed in Munters Unit

Capstone C60

Installed CHP System

Heat Recovery System

Hot water coils installed in Munters Unit

Munters HVAC Unit

Provides Heating, Cooling & Dehumidification

New Coils Added

CHP System Summary

- CHP System sized for thermal loads
 - provide 60 kW of baseload power
 - grid-parallel operation only
 - may consider scheduling turbine operation for periods when heat recovery loads are low
- System can use heat recovery when available <u>or</u> Munters systems: fully redundant

System Installation Costs

Microturbine & Unifin HX	\$70k
Coils in Munters Unit	\$7k
Steel, Roofing, Crane	\$20k
Electrical	\$8k
Plumbing	\$32k
GC Management	<u>\$5k</u>

Change Orders & "Metro NY Factor" probably added \$30-40k to installation (or \$500-700 per kW)

TOTAL

\$2360 per kW

\$142k

Field Monitoring

- Installed data logging equipment to quantify thermal and electric performance
 - electrical turbine output (kW, amps, volts)
 - thermal output of Unifin HX (flow, ΔT)
 - turbine exhaust(T, static P, flow)
 - desiccant/HVAC unit performance (T, RH, kW)

CHP Monitoring Points

Turbine Impact on Store

- turbine output PF maintained at 1.0
- Improves store PF
- exceptionally long wiring added 1.5 kW of losses

Overall CHP Performance

	Turl	oine	Parasitic Loads		Parasitic Loads Heat Rec		covered
Date	Power Output	•	-	Pump	Space Heating	Regen	
Date April-03	(kWh) 15,356	(MBTU) 209,649	(kWh) 1,097.3	(kWh) 250.0	(MBTU) 16,162	(MBTU)	
May-03	30,414	411,031	2,113.0		•	2,045	
June-03	39,087	549,741	2,767.1	530.1	18	17,223	
July-03	39,185	568,723	2,878.3	635.8		72,102	
August-03	10,864	· ·	838.9		0	46,035	
September-03	22,210	328,755	1,627.2	359.1	457	40,837	
October-03	33,777	465,929	2,312.4	512.2	21,063	12,828	
November-03	10,005	138,575	693.8	153.3	5,939	6,192	
December-03	5,290	66,833	370.7	81.7	4,688	0	
Totals	206,187	2,901,119	14,699	3,182	77,515	197,263	

(%)	"Net" CHP Efficiency (%)
23.2%	30.5%
23.5%	30.7%
22.5%	25.4%
21.8%	34.1%
21.1%	49.2%
21.4%	33.6%
23.0%	29.9%
22.9%	31.3%
25.1%	31.7%
22.5%	31.6%

Note: Actual natural gas HHV is used.

$$EFF = rac{W_{output} - W_{parasitic} + Q_{hr}}{G_{input}}$$

Daily Summer-Time CHP Performance

	Turl	oine	Parasitic Loads		Heat Recovered	
				Heat		
				Recovery		
	Power		Gas	Glycol	Space	Desiccant
	Output	Gas Input	Compressor	Pump	Heating	Regen
Date	(kWh)	(MBTU)	(kWh)	(kWh)	(MBTU)	(MBTU)
Aug 1, 2003	1,265.9	18,428	92.9	20.6	0	4,868
Aug 2, 2003	1,221.1	18,025	93.1	20.6	0	5,310
Aug 3, 2003	1,223.8	18,025	93.2	20.6	0	5,308
Aug 4, 2003	1,220.1	17,925	93.0	20.5	0	5,358
Aug 5, 2003	1,222.1	17,937	92.7	20.6	0	5,434
Aug 6, 2003	1,210.8	17,836	92.8	20.6	0	4,791
Aug 7, 2003	1,205.5	17,735	92.8	20.6	0	4,649
Aug 8, 2003	1,213.4	17,936	92.8	20.6	0	5,193
Aug 9, 2003	1,222.1	17,936	93.0	20.5	0	5,083
Aug 10, 2003	22.5	100	1.8	0.4	0	39
Totals	10,864	161,883	839	186	0	46,035

	[1-3-4+5+6] / [2]
"Net"	
Turbine	
Generation	"Net"
Efficiency	CHP Efficiency
(%)	(%)
21.7%	47.8%
21.4%	50.4%
21.4%	50.5%
21.5%	51.0%
21.5%	51.4%
21.4%	47.9%
21.4%	47.2%
21.3%	49.9%
21.5%	49.4%
21.1%	49.2%

Note: Actual natural gas HHV is used.

Daily Winter-Time CHP Performance

	Tur	bine	Parasitic	Loads	Heat Re	covered		
				Heat			"Net"	
				Recovery			Turbine	
	Power		Gas	Glycol	Space	Desiccant	Generation	"Net"
	Output	Gas Input	Compressor	Pump	Heating	Regen	Efficiency	CHP Efficiency
Date	(kWh)	(MBTU)	(kWh)	(kWh)	(MBTU)	(MBTU)	(%)	(%)
Dec 1, 2003	0.0	0	0.0	0.0	0	0		
Dec 2, 2003	0.0	0	0.0	0.0	0	0		
Dec 3, 2003	0.0	0	0.0	0.0	0	0		
Dec 4, 2003	621.1	8,417	47.9	10.4	1,578	0	23.2%	41.6%
Dec 5, 2003	1,188.0	13,727	77.4	17.0	3,110	0	27.6%	49.8%
Dec 6, 2003	0.0	0	0.0	0.0	0	0		
Dec 7, 2003	0.0	0	0.0	0.0	0	0		
Dec 8, 2003	0.0	0	0.0	0.0	0	0		
Dec 9, 2003	0.0	0	0.5	0.0	0	0		
Dec 10, 2003	0.0	0	0.0	0.0	0	0		

Turbine Efficiency Trend

Typical Performance of Heat Recovery System

HR Rate in Different Modes

Impact of Heat Recovery on Desiccant Gas Use

HR Impact on Space Heating

ETV Emissions Testing

- NYSERDA funded Environmental Technology Verification (ETV) testing at this site
- High-precision testing in June 03 confirmed
 CDH's thermal and power measurements
- Also collected emissions data:

	Capstone Rated	Measured
	Performance	Performance
Nitrogen Oxides - NO _x (ppmv @ 15% O ₂)	< 9	3.1
Carbon Monoxide - CO (ppmv @ 15% O ₂)	< 40	3.7
Total Hydrocarbons - THC (ppmv @ 15% O ₂)	< 9	0.9

Shade Plot of Turbine Operation

Turbine Availability Since April 18 2003 ~ 60-65%

Incident History

- April. Various grid faults. Enabled auto-start.
- May 15. Ground fault in main switchgear tripped. Protective setting tightened.
- August 10. Igniter/exciter failure. Replaced.
- <u>August 29</u>. Unifin stack damage from gas buildup when starting. Auto-start disabled.
- October & November. Various grid faults
- November 13. Could not start after grid fault. Intake cowling/engine needed to be replaced.
- <u>December 5</u>. Snow shorted pwr electronics. "Snow shroud" added.

Utility Interconnection Issue

- LIPA uses NYS Standard Interconnection Agreement and microturbine was "Type-Tested"
- BUT... details with site-specific electrical feed caused problems
 - non-radial electrical feed at the site required property owner to be involved
 - administrative issue, not a technical/safety issue
 - highlighted issues about interconnection in commercial tenant/owner properties

What is a Non-Radial Feed?

Manufacturer Support

- Manufacturer field support good after initial glitches
 - Capstone took responsibility for Unifin HX
 - Relationship details ironed out
 - Local Carrier technicians now supporting unit (within 10 miles of store)

The Future

- Integrating CHP into supermarket design would greatly lower costs
 - high installation costs result of "change orders"
- Equipment needs to be maintained and operated by 3rd parties
 - Supermarket operators are not in the power business
 - Supermarket chains are receptive to nonstandard business models

More Information

CDH Online Monitoring & Project Reports:

www.cdhenergy.com

click on: Online data access – Waldbaums

(user/pass: waldbaums/microturbine)

ETV Report

www.epa.gov/etv/verifications/vcenter3-3.html
(sep 03 report)